Roll No: \square

B. TECH
 (SEM III) THEORY EXAMINATION 2019-20 BASICS DATA STRUCTURE AND ALGORITHMS

Time: 3 Hours
Total Marks: 100
Note1.AttempltSectiohfsequiaramis sidgtatheahooselitably.
SECTIOAN

1. Attemqlaquestiontsrief.
$2 \times 10=20$

Qno.	Question	Marks	CO
a.	What is primitive data type?	2	CO1
b.	Define sparse matrix.	2	CO1
c.	What is PUSH and POP operation.	2	CO2
d.	What are two fields in Link list	2	CO2
e.	What is Binary Tree?	2	CO3
f.	What is AVL Tree.	2	CO3
g.	Explain Adjacency list for any graph	2	CO4
h.	Explain connected components	2	CO4
i.	What is unstable sorting?	2	CO4
j.	What is hoisting?	2	CO4

SECTION B

2. Attempt any three of the following:
$\mathbf{3 \times 1 0}=\mathbf{3 0}$

Qno.	Question	Marks	CO
a.	Explain asymptotic notations. Define Big-Oh notation and find the complexity of the following recursive function $T(n)=4 T(n / 2)+n \log n$	10	CO1
b.	Show the addition of given polynomials using linked list: $\mathrm{P}=3 \mathrm{X}^{\wedge} 2+2 \mathrm{X}+7 \mathrm{Q}=5 \mathrm{X}^{\wedge} 3 \wedge 2 \mathrm{X}^{\wedge} 2+\mathrm{X}$	10	CO 2
c.	What is binary searit tree? Make a binary search tree for following sequence: 871720236921522121	10	CO3
d.	Differentiate befiveen BFS and DFS with suitable example.	10	CO4
e.	What is stab sorting? Explain quick sort in detail.	10	CO4

SECTION C

3. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	How do you find the complexity of an algorithm? What is the relation between the time and space complexities of an algorithm? Justify your answer with an example	10	CO1
b.	Define queue. Explain various operations performed on queue with suitable example	10	CO5

4. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	What is recursion? Write a C code to solve tower of Hanoi problem.	10	CO 2
b.	Write an algorithm for conversion of infix to postfix expression. Translate infix expression into its equivalent post fix expression: A * $(\mathrm{B}+\mathrm{D}) / \mathrm{E}-\mathrm{F} *(\mathrm{G}+\mathrm{H} / \mathrm{I}()$	10	CO 3

5. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	Draw a binary tree which following traversal: In order: DBHEAIF J CG Preorder: ABDEHCFIJG	10	CO4
b.	What is Threaded Binary Tree? Explain insertion and deletion algorithms on threaded binary trees	10	CO4

6. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	Differentiate between Prims and Kruskal Algorithms with example.	10	CO2
b.	Write Short notes on:	10	CO 2
	i)	Walk	
	ii)	Path	
	iii	Topological sort	

7. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	Explain merge sort. Discuss its worst-case time complexity.	10	CO4
b.	What is B-Tree? Differentiate between B-Tree \& B+Tree.	10	CO3

